Material heralds new ‘dawn’ for superconductivity

In a historic achievement, researchers have created a superconducting material at both a temperature and pressure low enough for practical applications.

“With this material, the dawn of ambient superconductivity and applied technologies has arrived,” according to a team led by Ranga Dias, an assistant professor of mechanical engineering and of physics at the University of Rochester.

In a paper in Nature, the researchers describe a nitrogen-doped lutetium hydride (NDLH) that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Although 145,000 psi might still seem extraordinarily high (pressure at sea level is about 15 psi), strain engineering techniques routinely used in chip manufacturing, for example, incorporate materials held together by internal chemical pressures that are even higher.

Researchers stand over a laser array on a metal table in a lab.
Ranga Dias (left) and Nugzari Khalvashi-Sutter adjust a laser array in Dias’s advanced spectroscopy lab. (Credit: J. Adam Fenster/U. Rochester)

Scientists have been pursuing this breakthrough in condensed matter physics for more than a century. Superconducting materials have two key properties: electrical resistance vanishes, and the magnetic fields that are expelled pass around the superconducting material. Such materials could enable:

  • Power grids that transmit electricity without the loss of up to 200 million megawatt hours (MWh) of the energy that now occurs due to resistance in the wires
  • Frictionless, levitating high-speed trains
  • More affordable medical imaging and scanning techniques such as MRI and magnetocardiography
  • Faster, more efficient electronics for digital logic and memory device technology
  • Tokamak machines that use magnetic fields to confine plasmas to achieve fusion as a source of unlimited power

Previously, the researchers reported creating two materials—carbonaceous sulfur hydride and yttrium superhydride—that are superconducting at 58 degrees Fahrenheit/39 million psi and 12 degrees Fahrenheit/26 million psi respectively, in papers in Nature and Physical Review Letters.

Given the importance of the new discovery, Dias and his team went to unusual lengths to document their research and head off criticism that developed in the wake of the previous Nature paper, which led to a retraction by the journal’s editors. That previous paper has been resubmitted to Nature with new data that validates the earlier work, according to Dias. The new data was collected outside the lab, at the Argonne and Brookhaven National Laboratories in front of an audience of scientists who saw the superconducting transition live. A similar approach has been taken with the new paper.

Five graduate students in Dias’s lab—Nathan Dasenbrock-Gammon, Elliot Snider, Raymond McBride, Hiranya Pasan, and Dylan Durkee—are listed as co-lead authors.

“Everyone in the group was involved in doing the experiments,” Dias says. “It was truly a collective effort.”

Creating ‘reddmatter’

Hydrides created by combining rare earth metals with hydrogen, then adding nitrogen or carbon, have provided researchers a tantalizing “working recipe” for creating superconducting materials in recent years. In technical terms, rare earth metal hydrides form clathrate-like cage structures, where the rare earth metal ions act as carrier donors, providing sufficient electrons that would enhance the dissociation of the H2 molecules. Nitrogen and carbon help stabilize materials. Bottom line: less pressure is required for superconductivity to occur.

In addition to yttrium, researchers have used other rare earth metals. However, the resulting compounds become superconductive at temperatures or pressures that are still not practical for applications.

So, this time, Dias looked elsewhere along the periodic table.

Lutetium looked like “a good candidate to try,” Dias says. It has highly localized fully-filled 14 electrons in its f orbital configuration that suppress the phonon softening and provide enhancement to the electron-phonon coupling needed for superconductivity to take place at ambient temperatures. “The key question was, how are we going to stabilize this to lower the required pressure? And that’s where nitrogen came into the picture.”

Nitrogen, like carbon, has a rigid atomic structure that can be used to create a more stable, cage-like lattice within a material and it hardens the low-frequency optical phonons, according to Dias. This structure provides the stability for superconductivity to occur at lower pressure.

Dias’s team created a gas mixture of 99% hydrogen and 1% nitrogen, placed it in a reaction chamber with a pure sample of lutetium, and let the components react for two to three days at 392 degrees Fahrenheit.

The resulting lutetium-nitrogen-hydrogen compound was initially a “lustrous bluish color,” the paper states. When the compound was then compressed in a diamond anvil cell, a “startling visual transformation” occurred: from blue to pink at the onset of superconductivity, and then to a bright red non-superconducting metallic state.

“It was a very bright red,” Dias says. “I was shocked to see colors of this intensity. We humorously suggested a code name for the material at this state—’reddmatter’—after a material that Spock created in the popular 2009 Star Trek movie.” The code name stuck.

The 145,000 psi of pressure required to induce superconductivity is nearly two orders of magnitude lower than the previous low pressure created in Dias’s lab.

Reaching the ‘modern superconducting era’

With funding support from Dias’s National Science Foundation CAREER award and a grant from the US Department of Energy, his lab has now answered the question of whether superconducting material can exist at both ambient temperatures and pressures low enough for practical applications.

“A pathway to superconducting consumer electronics, energy transfer lines, transportation, and significant improvements of magnetic confinement for fusion are now a reality,” Dias says. “We believe we are now at the modern superconducting era.”

For example, Dias predicts that the nitrogen-doped lutetium hydride will greatly accelerate progress in developing tokamak machines to achieve fusion. Instead of using powerful, converging laser beams to implode a fuel pellet, tokamaks rely on strong magnetic fields emitted by a doughnut-shaped enclosure to trap, hold, and ignite super-heated plasmas. NDLH, which produces an “enormous magnetic field” at room temperatures, “will be a game-changer” for the emerging technology, Dias says.

Particularly exciting, according to Dias, is the possibility of training machine-learning algorithms with the accumulated data from superconducting experimentation in his lab to predict other possible superconducting materials—in effect, mixing and matching from thousands of possible combinations of rare earth metals, nitrogen, hydrogen, and carbon.

“In day-to-day life we have many different metals we use for different applications, so we will also need different kinds of superconducting materials,” Dias says. “just like we use different metals for different applications, we need more ambient superconductors for different applications.”

Coauthor Keith Lawlor has already begun developing algorithms and making calculations using supercomputing resources available through the University of Rochester’s Center for Integrated Research Computing.

Source: University of Rochester

source

Temple University graduate students ratify new contract ending 6-week walkout

Temple University graduate students who are teaching and research assistants have overwhelmingly ratified a new contract, ending their six-week-long walkout.

The Temple University Graduate Students Association, which said Monday evening that the vote was 344 to 8 in favor of ratification, said the new agreement “addressed the union’s core demands of increased wages, more affordable dependent health care, reasonable leave policies, and better working conditions.”

Members last month voted 352 to 30 to reject another proposal that was reached Feb. 18 and to continue the walkout.

TEMPLE UNIVERSITY ACCUSED COP KILLER ALLEGEDLY TRIED TO ROB FALLEN OFFICER BEFORE FLEEING: REPORTS

The new agreement, which the union called “the most robust” in its history and will be in effect until 2026, includes a market adjustment to pay “with significant wage increases in the first year followed by substantial raises in subsequent years,” the union said. Also included are partial health care coverage for dependents, increased parental and bereavement leave, and improvements in the grievance procedure and articles relating to workload, the union said.

Over the past six weeks, the university has “demonstrated remarkable resilience,” Temple President Jason Wingard said in a statement that he’s pleased with the agreement.

Temple University graduate students have ratified a new contract ending a six-week-long strike.

Temple University graduate students have ratified a new contract ending a six-week-long strike.

He said, “Perseverance conquers, and today’s agreement is evidence of our collective willingness to unite and advance,” The Philadelphia Inquirer reported.

TEMPLE UNIVERSITY RESPONDS TO STRIKING STUDENT WORKERS BY CUTTING BENEFITS, SENDING THEM A BILL

The association, which represents about 750 members, began the first strike in its two-decade-long history on Jan. 31 after more than a year of negotiations and no agreement. The students teach core undergraduate courses and assist professors with research.

The university has said that about 20% of graduate students who are teaching and research assistants have not continued to work, but the union said at least twice that many were on strike. Many classes were moved online to accommodate new instructors’ schedules, and in response to reports of intimidation of students and instructors, the university said.

CLICK TO GET THE FOX NEWS APP

Temple had withdrawn free tuition from the strikers, giving them a month to pay in full — or face a late fee and a financial hold that would bar them from registering for more classes. Union leaders said the university has also been deactivating the health care accounts of striking students.

Under the new agreement, graduate students’ minimum pay will rise to $24,000 in the first year and $27,000 by year four — a 30% increase over the life of the contract, the Inquirer reported. Graduate students will also get a $500 one-time payment and the university will pay 25% toward health insurance subsidies for their dependents.

source